

MATLAB Marina: Applying Arrays

Student Learning Objectives
After completing this module, one should:
1. Be able to solve problems involving arrays of data.

Terms
NA

MATLAB Functions, Keywords, and Operators
NA

Applying Arrays
Arrays and element by element operations are useful for many engineering applications such
as: evaluating a formula for a range of values, evaluating piece-wise formulas, analyzing a set or
a portion of a set of data, and computing a series summation.

Evaluating a Formula
To evaluate a formula for a range of values:

• Determine the initial and final independent variable values and determine the interval
between values (or the number of values).

• Create an array of the independent variable values for the range. This is typically done
using the colon operator or the linspace function.

• Evaluate the formula for the array of the independent variable values. Use element by
element operations where appropriate.

The MATLAB program of Figure 1 evaluates and plots the formula () 2

0 0 00.5s t s v t a t= + + over
the range 0.0 6.0t≤ ≤ s.

Figure 1. MATLAB Program to Evaluate a Formula

Notice that when referring to the variable for the function, that s rather than s(t) is used.
Parentheses cannot be used in a variable name. The syntax s(t) corresponds to either indexing
the variable s or invoking a function named s for the argument t. If the statement

clear; clc; close all;
s0 = 0.0;
v0 = 10.0;
a0 = -1.5;
% create the independent variable values
t = 0.0 : 0.05 : 6.0;
% evaluate the formula for the array of values
s = s0 + v0*t + 0.5*a0*t.^2;
figure(1)
plot (t, s)

2

s(t) = s0 + v0*t + 0.5*a0*t.^2;
were used, the program would have an error as MATLAB would evaluate the formula and then
try to place the result in the variable s in the range of indices in the variable t. Array indices
must be integers, thus this will result in an error.

Indexing the array that will hold the result of the operation is not necessary when a variable is
being used for the first time or is being redefined. MATLAB will allocate enough space for the
result of the operation and place the elements of the result in the variable in the same order as
the evaluation results in.

Evaluating a Piece-wise Defined Formula
To evaluate a piece-wise formula, the process is similar to evaluating multiple formulae for
different ranges of values.

• Determine the initial and final independent variable values and determine the interval
between values for each of the pieces.

• Create arrays for the independent variable values in each range.
• Evaluate each piece of the formula for the appropriate piece of independent variable

values.
• Concatenate the independent variable value pieces into one array and concatenate the

formula value pieces into one array.

The MATLAB program of Figure 2 evaluates the piecewise formula

() ()

0.5

1.5 1,5

5 0 1.5

4.116 1.5 2.5

t

t

te t
f t

e t

−

− −

 ≤ ≤= 
< ≤

Figure 2. MATLAB Program to Evaluate a Piece-wise Formula

Analyzing a Set of Data
Array comparisons can be used to analyze a set of data, for example determining which data
meet a set of criteria. The MATLAB program of Figure 3 determines which steels have a yield
strength greater than 420 MPa along with the strengths of the steels that met the criteria.

clear; clc; close all;
% create the two pieces for the independent variable
t1 = 0.0 : 0.05 : 1.5;
t2 = 1.55 : 0.05 : 2.5;
% evaluate each piece of the formula
f1 = 5.0*t1.*exp(-0.4*t1);
f2 = f1(end)*exp(-1.5*(t2 - 1.5));
% concatenate the pieces
t = [t1, t2];
f = [f1, f2];

3

Figure 3. MATLAB Program to Determine Steels with Strength Greater than 420 MPa

The data for an operation like this would typically come from a file and not be entered directly.
A comparison, strengths > 420, is used to determine which steels meet the criteria. Since
a comparison returns an array of logicals, the find function is used to convert this to the
corresponding indices of the array of steel strengths. The indices are then used to identify
which steels met the criteria and to extract the strengths greater than 420 MPa via an indexing
operation.

Evaluating a Formula and Extracting a Subrange
The MATLAB program of Figure 4 evaluates a formula and plots the formula over the full range
and a subrange of interest.

Figure 4. Extracting a Subrange of a Formula

clear; clc;
% steel tensile strength (yield strength) in MPa
strengths = [374.7, 334.2, 416.5, 335.8, 329.8, 521.2, ...
 415.8, 368.5, 573.1, 411.3, 474.4, 559.8, 397.1, ...
 576.7, 383.2, 401.4, 415.7, 347.8, 332.7, 410.6, ...
 548.4, 581.9, 417.1, 400.0];
% determine which steels have strengths greater than 420 MPa
str_ind = find(strengths > 420);
which = str_ind;
% steel strengths greater than 420 MPa
strengthsGT = strengths(str_ind);

clear; clc; close all;
s0 = 0.0;
v0 = 10.0;
a0 = -1.5;
% create the independent variable values
t = 0.0 : 0.05 : 10.0;
% evaluate the formula for the array of values
s = s0 + v0*t + 0.5*a0*t.^2;
figure(1)
plot (t, s)
% determine where s is a max
[maxS, ind] = max(s);
% extract a 2 second window of values around the max
delt = 1.0;
tL = t(ind) - delt; % lower t value for window
tU = t(ind) + delt; % upper t value for window
% extract the two second window
t2 = t(t>= tL & t <= tU);
s2 = s(t>= tL & t <= tU);
figure(2)
plot (t2, s2), axis tight;

4

The program is based off the program of Figure 1 that evaluates a formula. Here the full range
is 0.0 10.0t≤ ≤ s. The maximum value of the formula and location of the maximum value are
then determined. The index corresponding to the maximum value is used to determine the
corresponding time where the maximum value occurs and from this the times for the lower and
upper bound of the window can be calculated. A comparison to determine the range of t values
corresponding to the window is performed and the resulting array of logicals from the
comparison is used to index the t and s values for the window. The array of logicals from the
comparison is not saved as it is not needed elsewhere in the program.

Series Summation

The MATLAB program of Figure 5 approximates the geometric series ()1
2

1

k

k
S

∞

=

=∑ for N terms,

()1
2

1

N
k

k
S

=

≈∑ . This geometric series converges to 1S = .

Figure 5. MATLAB Program to Approximate a Geometric Series

The number of terms is initialized and an array of all the term numbers from k = 1 to k = N is
created. The series formula, ()1

2
k , is evaluated for each of the term numbers generating an

array of terms in the series. Summing all the series terms yields the series approximation.

Last modified Friday, September 18, 2020

 MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

clear; clc; close all;
% number of terms in approximation
N = 20;
% array of term numbers
k = 1:1:N;
% evaluate the geometric series formula for each term
terms = (1/2).^k;
% sum the terms to determine approximation
Sapp = sum(terms);

http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina: Applying Arrays
	Student Learning Objectives
	Terms
	MATLAB Functions, Keywords, and Operators
	Applying Arrays
	Evaluating a Formula
	Evaluating a Piece-wise Defined Formula
	Analyzing a Set of Data
	Evaluating a Formula and Extracting a Subrange
	Series Summation

